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We present a set of numerical methods for simulations of microstructural evolution
in elastically stressed solids. We combine three powerful tools to achieve computa-
tional efficiency: the boundary integral method to provide excellent resolution, the
fast multipole method to reduce computational cost, and the small-scale decompo-
sition technique with a two-level time-stepping scheme to remove the stiffness from
the time advance. Although we apply these methods to study the topic of our interest,
the details of how they are implemented can be useful in many other situations. We
extend the fast multipole method to calculate the anisotropic stress field in periodic
two-dimensional domains and in doing so address issues associated with the con-
ditional convergence of the summations. In addition, we introduce a new formula
for the potential in periodically arranged two-dimensional cells in the absence of an
applied field through a summation in physical space without using the Ewald sum.
Furthermore, we implement a time-stepping scheme that enables us to speed up the
calculation by an additional factor of 100 over a straightforward implementation of
the small-scale decomposition technique. The computational complexity scales as
the number of mesh pointsN, and thus we are able to employN ∼ 500, 000 in a
typical calculation. c© 2001 Academic Press

Key Words:fast multipole method; boundary integral method; Ostwald ripening;
periodic potential; anisotropic elasticity.

1. INTRODUCTION

Microstructures consisting of matrix and particle phases in metals are of industrial in-
terest since the sizes and shapes of the particles can control the physical characteristics of
the material. In such materials, thermomechanical processing is employed to achieve the
desired properties. These processes typically involve aging at elevated temperatures where
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solid-state diffusion is significant. Under these conditions, the second-phase particles can
grow and their average size increases via a process known as Ostwald ripening, or coarsen-
ing. The coarsening process is well understood theoretically when the only driving force for
the coarsening process is the surface energy. In this case, the system evolves to reduce the
total interfacial energy, which is linearly proportional to the interfacial area. Therefore, the
evolution proceeds by larger particles growing at the expense of smaller particles. Lifshitz
and Slyozov [19] and Wagner [36] (LSW) described this process in the limit of a zero
volume fraction of particle phase and found a self-similar growth characterized by a single
length scale,R(t), whereR is the average particle size, that varies as∼t1/3. Systems with
nonzero volume fractions have also been studied; see [1, 20, 21] and references therein.
These theories find that the temporal power laws for the average particle size predicted
by LSW remain unchanged by a nonzero volume fraction; however, the amplitudes of the
temporal power laws were found to depend on the volume fraction of coarsening phase.
Specifically, the constantK in R3(t) ∼ Kt is predicted to increase monotonically with the
volume fraction.

In two-phase solid systems, the difference in the lattice parameters of the matrix and
particle phases, or the misfit, gives rise to a long-range elastic field. This contributes ad-
ditional energy to the system. It is not known quantitatively how elastic stress modifies
the statistically averaged properties of the Ostwald ripening process, but much qualitative
information indicates that the changes are significant. The effects of elastic stress on the
evolution of the microstructure have been studied extensively in model alloys such as Ni-Al,
where there is a misfit between the particles and the matrix. Experimental results clearly
show changes in the microstructure as elastic energy becomes important (see, for example,
[4]). They show microstructures consisting of particles with various shapes and symmetries
that depend on the magnitude and symmetry of the elastic stress. For example, in cubic
alloys with a dilatational misfit, such as the Ni-Al system studied by Ardell and Nicholson,
the particle shape changes from a sphere to a cuboid as the relative importance of the elastic
energy (proportional to the volume) to the interfacial energy (proportional to the interfacial
area) increases along with the average particle size [4]. At still larger sizes, the cuboids
change to plate-like or rod-like shaped particles. Furthermore, at the same time the particles
align themselves along the elastically soft〈100〉 directions of the crystal. This change in
the microstructure modifies the properties of the material, and finding a practical method
to control it is an important issue in the metallurgical community.

The evolution of microstructure in elastically stressed solids has been well studied via
a number of numerical techniques. Computational simulations of particle coarsening in
elastically stressed solids have been performed using diffuse interface models [17, 24, 29,
37], Ising models [9, 16], and sharp interface models [14, 35]. They show that the parti-
cle shape evolution from spheres to cuboids, and then to plates, is the direct result of the
anisotropic elastic energy. The results are qualitatively consistent with experimental results.
In addition, the calculated spatial distribution of the particles is similar to those observed
in experiments. However, these simulations were performed using relatively small system
sizes (order of 10 particles in many cases), and they do not provide enough information to
characterize the microstructure quantitatively, or to determine the evolution of the statisti-
cally averaged properties of these ensembles. The challenge of extending these calculations
to systems with many thousands of particles is that the shapes of the particles cannot be
constrained, but must evolve in a manner that is consistent with the diffusion and stress fields
in the system. Thus, one must solve a multibody free-boundary problem involving diffusion
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and stress fields that evolve with the microstructure. Although phase field methods have
advantages, such as the ability to accommodate particle coalescence and disappearance,
they have difficulties matching the excellent resolution of the interfaces that sharp-interface
models provide in systems with large number of particles. Given the goal of simulating
systems containing large number of particles, we choose the sharp interface formulation of
the problem.

In this paper, we describe the method which enables us to perform large-scale simulations
of elastically stressed solids accurately and efficiently. It is made possible through a combi-
nation of advanced numerical methods—the boundary integral method, the fast multipole
algorithm, and a two-level time-stepping technique along with the small-scale decomposi-
tion, or theθ -L formulation—modified to work together in our specific case. We outline
the method to combine these formulations and give detailed descriptions of modifications
that were made. The methods that we have implemented will be useful for other problems
as well.

2. THEORETICAL BACKGROUND

Consider a two-phase solid system wherein the particles and the matrix possess differ-
ent lattice parameters, the interfaces between the particles and the matrix are coherent,
and the Ostwald ripening process occurs via the diffusion of mass. Following [34], we
nondimensionalize the dimensional concentration field,C, by

u =
(
C − Cα

∞
)
l

lcCα∞
, (1)

and the dimensional time,T , by

t = T/t̃, (2)

where

t̃ = ζ l 2

D
, (3)

ζ =
(
Cβ
∞ − Cα

∞
)
l

lcCα∞
, (4)

C∞ is the value ofC at a flat interface, superscriptsα andβ denote the matrix and particle
phases, respectively,l is the length scale used in nondimensionalization,lc is the capil-
lary length, andD is the diffusion coefficient. The length scalel may be taken to be the
particle size, or, if many particles are present, either the size of the computational domain
in dimensional units or the initial average particle size. All variables in this paper are
nondimensionalized unless otherwise noted. Assuming that the motion of the interfaces is
slow compared to the relaxation time for the concentration field, a good assumption during
coarsening,u in the matrix phase satisfies the steady-state diffusion equation,

∇2u(x) = 0. (5)
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We assume periodic boundary conditions for the computational domain for our calculations.
The concentration at the particle–matrix interface is given by the stress-modified Gibbs–
Thomson equation [12],

u(x) = κ + L

{
1

2
[[T · Ẽ]] − Tα · [[E]]

}
, (6)

whereκ is the curvature,T is the dimensionless elastic stress,Ẽ is the scaled elastic strain,
E is the scaled total strain, and [[f ]] = f β − f α for a quantity f at the interface.L is a
dimensionless parameter [28] which is defined as

L = ε2C44r

σ
, (7)

whereε is the magnitude of the dilatational misfit,C44 is one of the dimensional elastic
constants in this cubic alloy,r is the dimensional effective radius of the particle, andσ is
the dimensional interfacial energy. By this definition, the dimensionless elastic constants
are normalized toC44, T = t/(C44ε), E = e/ε, and Ẽ = ẽ/ε, wheret, e, and ẽ are the
corresponding dimensional quantities. Here, the effective radius of a noncircular particle is
defined asr = √A/π , whereA is the area of the (two-dimensional) particle, and we have
assumed that the lattice parameter of the phases and elastic constants are not functions of
composition.

The parameterL gives the relative importance of the elastic energy compared to the
interfacial energy. In each simulation, we assign the ratioε2C44/σ to the system. This
gives the value ofL for each particle. SinceL is proportional to the radius of the particle,
〈L〉 increases as time increases. Therefore, the stress effects become more important as
coarsening proceeds.

The evolution of the interface is given by the interfacial mass balance,

V(x) = ∂u

∂n
, (8)

whereV is the normal velocity of the interface,x is a point on the interface, andn is the
coordinate along the normaln. We also constrain the total volume of particle phase to be
constant,

M∑
j=1

∫
γ j

V(x) dsj = 0, (9)

wheredsj is the arc length element of the interfaceγ j of the j -th particle andM is the
total number of particles. After solving Eq. (5) with the boundary condition Eq. (6), the
interface is updated using the normal velocity given in Eq. (8). When a particle becomes
very small (r < 0.05〈r 〉, equivalent to 0.25% in area compared to that of the average-sized
particle), it is assumed to have disappeared and is removed from the calculation. The mass
conservation constraint (Eq. (9)) implies that the area fraction of particle phase remains
constant. We therefore make a very small adjustment to the area fraction of the particle
phase to compensate for the removed particle area.
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In mechanical equilibrium, the stress field satisfies

3∑
j=1

Ti j , j = 0, i = 1, 2, 3, (10)

with the boundary conditions at the matrix–particle interfaces

3∑
j=1

[[Ti j ]]nj = 0, i = 1, 2, 3, (11)

[[Ui ]] = 0, i = 1, 2, 3, (12)

whereUi is the i -th component of the displacement vector, and the comma denotes dif-
ferentiation in the direction indicated by the index. We take the system to be elastically
homogeneous and anisotropic. This enables us to obtain the stress and strain fields at the
interfaces through the Green’s function corresponding to Eqs. (10)–(12) [23]. The stresses
and strains that appear in Eq. (6) are then calculated by determining the scaled displacement
gradient along the interface,

U j,k(x) =
M∑

n=1

3∑
i,l ,m=1

cilmm

∫
γn

gi j ,k(x, x′)n′l ds′, (13)

whereci jkl is the dimensionless elastic constant tensor with cubic symmetry,gi j is the
dimensionless anisotropic elastic Green’s function tensor,x andx′(s′) are points on the
interface, ands′ is the arc length coordinate. The stress and strain are then determined
using the derivatives of the displacement and the constitutive relations of anisotropic linear
elasticity, namely,

Ti j =
3∑

k,l=1

ci jkl Ẽkl , (14)

Ei j = 1

2
(Ui, j +U j,i ), (15)

andẼα
i j andẼβ

i j are given by

Ẽα
i j = Eα

i j , (16)

Ẽβ
i j = Eβ

i j − δi j , (17)

whereδi j is the Kronecker delta. Other crystal symmetries can be accommodated since the
Stroh theory yields an essentially analytic Green’s function in the same form considered in
this paper. So far, we have only implemented an extension to a tetragonal misfit, and we
have made some simulations with good results.

The set of equations, Eqs. (5)–(13), is to be solved for a system of particles with arbitrary
shapes. Complications arise because of the nonlinear nature of the boundary condition
Eq. (6), not only as a result of the curvature dependence in the Gibbs–Thomson equation,
but also as a result of the elastic stress. (The field equations are linear.) We adopt the
boundary integral technique to solve this free-boundary problem accurately and efficiently.
Further details are given in Section 5.1.
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3. ELASTIC FIELD

An efficient implementation of the quadrature shown in Eq. (13) requires knowledge of
the Green’s function. In two dimensions, a particularly advantageous representation of the
Green’s function can be obtained using Stroh theory [5],

gjk(x− x′) = − 1

2π i

6∑
α=1

±AjαAkα ln(m · (x− x′)+ λαn · (x− x′)), (18)

wherem = (cosθ, sinθ, 0), n = (−sinθ, cosθ, 0), andθ is the angle between thex-axis
and the vectorm. Note thatm andn are orthogonal andα denotes different sets of eigen-
values and eigenvectors.Aα andλα satisfy the following equation,

3∑
i,k,m=1

ci jkm(mi + λαni )(mm + λαnm)Akα = 0. (19)

Equation (19) can be transformed to a six-dimensional eigenvalue problem by introducing
the associated vectorLα [5],

L jα =
3∑

i,k,m=1

−ni ci jkm(mm + λαnm)Akα, (20)

or equivalently,

L jα =
3∑

i,k,m=1

1

λα
mi ci jkm(mm + λαnm)Akα, (21)

with the normalization condition,

3∑
j=1

AjαL jα = 1

2
. (22)

Thus,Aα andλα are the eigenvector and eigenvalue, respectively.
In our calculation, we need the eigenvalues,λα, α = 1, 2, . . . ,6, and the products of the

eigenvectors components,A2
1α, A2

2α, andA1αA2α. For cubic symmetry, these can be found
analytically form = (1, 0, 0) andn = (0, 1, 0), resulting in six eigenvalues. Forλα = ±i ,
all relevant products ofAjα ’s are identically zero, and therefore the associated terms do not
contribute. For the rest of the eigenvalues,

λα = f + g, f − g,− f + g,− f − g, (23)

where

f =
√
(C11+ C12)(2C44− C11+ C12)

4C11C44
, (24)

g =
√
(−C11+ C12)(2C44+ C11+ C12)

4C11C44
. (25)
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Ci j ’s are contracted (Voigt) elastic constants [23], and

A2
1α =

λα
(
C44+ C11λ

2
α

)
2C11C44

(
1− λ4

α

) , (26)

A2
2α =

λα
(
C11+ C44λ

2
α

)
2C11C44

(
1− λ4

α

) , (27)

A1αA2α = − λ2
α(C12+ C44)

2C11C44
(
1− λ4

α

) . (28)

The eigenvalues and the eigenvectors need to be computed only once at the beginning
of the simulation for the specified elastic constants. Although there are four contributing
eigenvalues, two sets of two terms give the same results. Therefore, the integral in Eq. (13)
with the Green’s function defined in Eq. (18) must be performed only twice, not four times.
The elastic interaction is long ranged, and thus we cannot impose a cutoff distance for the
interaction. Consequently, the Green’s function in Eq. (18) needs to be integrated for all
pairs ofx andx′. The direct summation would result in a complexity ofO(N2), where
N is the number of mesh points, making a large-scale simulation impossible. Therefore, a
modified fast multipole method (FMM) is adopted to remove this obstacle.

4. THE POTENTIAL IN A PERIODICALLY ARRANGED CELL

Since the FMM sums in physical space, it is necessary to determine potentials in a
system with periodically repeated cells. The potential resulting from long-range interactions
between particles and their periodic images is often important. Typically, when potentials
are calculated in physical space, the Ewald sum [3] has been applied. The method involves
summation in both physical space and in reciprocal (Fourier) space, and there are a few
parameters that need to be chosen depending on the specifics of the simulated systems.
Schmidt and Lee derived a method to convert the FMM potential to one consistent with the
Ewald sum by comparing the expressions resulting from each method [26]. They obtained
a correction term for a three-dimensional problem in terms of multipole moments and
spherical harmonics. In another work, the periodic contribution to a sum was calculated
via FMM summation over the repeated (image) cells [8]. While the FMM is very efficient
in calculating sums in a large domain, this approach requires more computational time
than that required for a calculation over one cell. In another approach, fictitious charges
are added to cancel the net dipole moment in the unit cell so that the correction term
becomes zero, thus obviating the need to correct for the dipole-induced surface charge on
the unit cell [15]. Although the potential resulting from this approach does give the correct
derivative of the potential that takes into account the potentials generated by the image
cells, the potential itself is shifted by an arbitrary constant. Therefore, this approach is not
appropriate in some situations, such as energy calculations, where the absolute value of the
result is important. In this section, we develop compact formulae for periodic potentials
resulting from monopoles and dipoles in two-dimensional space. The new method is much
more straightforward compared to the previous approaches and greatly improves the ability
to work with numerical methods such as the FMM. The additional computational time to
account for the interaction with periodic images is small as it is included in the analytic
expression for the potential in terms of a multipole expansion. There are no parameters
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to adjust to achieve certain accuracy because it is an exact formula (other than the usual
truncation of multipole terms). We then employ these expressions to derive the potentials
in periodically arranged cells for the elasticity, as well as for the diffusion problems.

We assume that the computational domain of unit size is repeated periodically to fill all
two-dimensional space. In the absence of an applied field, the potential is periodic with
a period of unity, because of the effects from all particles in the repeated cells. We must
be able to calculate these effects without directly summing the actual potentials from each
particle in the repeated cells. A multipole expansion can be used to carry this out, but a
straightforward calculation results in a potential without proper periodicity. As we address
later, this is due to the conditionally convergent term; that is, the numerical value of the
term depends on how the sum is taken, and it requires special attention to reach the correct
result for a particular application.

Consider a potential atx generated by chargesqj at locationsx j ,

φ(x) =
N∑

j=1

qj log |x j − x|, (29)

and by dipoles with strengthpj and directionnj ,

ψ(x) =
N∑

j=1

pj
∂

∂nj
log |x j − x|, (30)

wherenj is the coordinate alongnj . Here,njx andnjy , are thex- andy-components ofnj ,
respectively, given by

njx = ∂xj

∂nj
, (31)

njy = ∂yj

∂nj
. (32)

Writing in complex form, the potentials can be expressed as

wφ(Z) =
N∑

j=1

qj log(zj − z), (33)

and

wψ(Z) =
N∑

j=1

pj
∂

∂nj
log(zj − z)

=
N∑

j=1

µ j

zj − z
, (34)

wherex = (x, y) is expressed in terms of complex variablez= x + iy, andµ j = pj (njx +
in jy) is the complex dipole charge. Note that the real part ofwφ(z) andwψ(z) is identical
to φ(x) andψ(x), respectively.
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We first focus on the dipole potential,wψ(z). Assume the sources are located in a unit
cell which is repeated to fill the two-dimensional space completely. Letζk be the location of
the center of thek-th cell, and we apply the multipole expansion. Splitting the summation
in three parts, a term corresponding to the central cell, a sum for the surrounding eight cells
(nearby cells) and another for the rest (well-separated cells),

wψ(z) =
N∑

j=1

∑
k

µ j

zj − z+ ζk

=
N∑

j=1

µ j

(
1

zj − z
+
∑

k

′ 1

zj − z+ ζk
+
∑

k

′′ 1

zj − z+ ζk

)
. (35)

Here, the summation overk for the nearby cells is denoted by
∑′ and the summation over

the rest (well separated cells) by
∑′′. The last term in the right-hand side of Eq. (35) is

rewritten as a multipole expansion,

N∑
j=1

µ j

∑
k

′′ 1

zj − z+ ζk
=

N∑
j=1

µ j

∑
k

′′ ∞∑
m=0

1

ζk

(
z− zj

ζk

)m

=
N∑

j=1

µ j

∞∑
m=0

S̃m+1(z− zj )
m, (36)

whereS̃m is the (partial) lattice sum,

S̃m =
∑

k

′′ 1

ζm
k

. (37)

This lattice sum excludes the part that is due to the nearby cells in the usual (complete)
lattice sum, which is given by

Sm =
∑

k

1

ζm
k

, (38)

in which the sum goes over all cells other than the one at the origin. AllS’s but S2 can
be computed using the renormalization method [6]. For a square unit cell,Sm for m= 4l ,
wherel is an integer, converges absolutely to nonzero real values, which have been tabulated
in [6]. In addition, bothSm andS̃m are zero for allm exceptm= 2 andm= 4l in this case.
The value ofS̃m depends on the shape of the unit cell since the part that is absent inS̃m

is shape dependent. Computing the value ofS2 is not as straightforward as this is not
absolutely convergent, and the value depends on how the sum is computed. For example
[7, 11],

S2 =


0 circular or square shape of summation

π x-direction first

−π y-direction first

(39)
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In the first case, the symmetry of the summation is taken to be either a circular or square
shell, retaining the symmetry betweenx- and y-directions. In the second and the third,
the summation shell is a strip alongx- and y-directions, respectively. In addition to this
convergence issue, we also note that the potential for a unit dipole in the form of Eq. (35)
where the last term is replaced by Eq. (36) is not periodic for any value ofS2. The treatment
of the term, therefore, depends on the physics of the problem under consideration. Thus,
we separate the term that containsS̃2. Since for the geometry we considerS̃m are zero for
oddm,

wψ(z) =
N∑

j=1

µ j

(
1

zj − z
+
∑

k

′ 1

zj − z+ ζk
+
∞∑

m=1

S̃2m+2(z− zj )
2m+1+ S̃2(z− zj )

)
.

(40)

The problem of conditional convergence in computing the potential in periodic cells has
been studied in the context of the electrostatic energy in ionic crystals. We follow a similar
approach suggested by Smith [27], and replace the last term in Eq. (40) with a shape-
dependent dipole correction term, which can be determined given the shape of the unit cell.
Rather than calculating this term via a complicated analytic method, we will take advantage
of the linearity of the term to impose periodicity. We now limit our discussion to the case
where the unit cell is square. (The corresponding details for the parallelogram-shaped unit
cell needed in calculating the elastic field are given later in Section 5.2.) For the square unit
cell, we consider a region defined by four corners(− 1

2,− 1
2), (− 1

2,
1
2), (

1
2,− 1

2), and( 1
2,

1
2).

Without loss of generality, we take two pairs of translationally equivalent points (cf. Fig. 1),
and calculate the potential (excluding the term containingS̃2) at these points. To calculate a
unit dipole correction, consider a dipole of unit strength (µ= 1) at the origin for simplicity.
Let υ(z) be the potential generated by the dipole excluding the conditionally convergent
term,

FIG. 1. Example definition of translationally equivalent points, (A) for the square unit cell (for calculation
of the diffusion field) and (B) for the parallelepiped unit cell (for calculation of the elastic field). C and I denote
the central unit cell and repeated image cells, respectively. Pointsa andb are an example of a translationally
equivalent pair in thex-direction, whilec andd are one in they-direction.
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υ(z) = 1

−z
+
∑

k

′ 1

ζk − z
+
∞∑

m=1

S̃2m+2z2m+1. (41)

We suggest the dipole correction term in the form

wdc
φ (z) = −

N∑
j=1

(<(µ j Cx)(x − xj )+<(µ j Cy)(y− yj )
)
, (42)

so that

wψ(z) =
N∑

j=1

{
µ j

(
1

zj − z
+
∑

k

′ 1

zj − z+ ζk
+
∞∑

m=1

S̃2m+2(z− zj )
2m+1

)

− [<(µ j Cx)(x − xj )+<(µ j Cy)(y− yj )]

}
, (43)

whereCx andCy are the difference ofυ at the translationally equivalent points in thex-
andy-directions, respectively,

Cx = υ(0.5+ 0i )− υ(−0.5+ 0i ),

Cy = υ(0+ 0.5i )− υ(0− 0.5i ).

Here, the translationally equivalent points are taken to bez= ±0.5 andz= ±i 0.5 as shown
in Fig. 1. It should be noted thatCx andCy can be complex numbers. Evaluating numerically
Cx andCy for the square unit cell, we have

Cx = −π, (44)

Cy = iπ. (45)

Therefore, we have for a potential resulting from dipoles in periodically arranged two-
dimensional square unit cells in the absence of an applied field,

wψ(z) =
N∑

j=1

(∑
k

′′′ µ j

zj − z+ ζk
+
∞∑

m=1

µ j S̃2m+2(z− zj )
2m+1+ πµ∗j (z− zj )

)
, (46)

where the conditionally convergent term has been replaced with a dipole correction term,
wdc
ψ (z, zj ). The term

∑′′′ denotes summation overk for the nearby cells and the cell at the
center (i.e., over the nonwell-separated cells).

Similarly, we now calculate a corresponding expression for the potential generated by
monopoles. A straightforward expansion together with charge neutrality (which for the
diffusion problem ensures that the area fraction of particle phase remains constant) gives

wφ(z) =
N∑

j=1

qj

{∑
k

′′′
log(zj − z+ ζk)

−
∞∑

m=1

(
S̃2m+2

2m+ 2
(z− zj )

2m+2

)
− S̃2

2
(z− zj )

2

}
. (47)
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Again, the conditionally convergent term is separated from other terms, and is replaced by
the dipole correction term. That is,

wφ(z) = wac
φ (z)+ wdc

φ (z), (48)

where

wac
φ (z) =

N∑
j=1

qj

{∑
k

′′′
log(zj − z+ ζk)−

∞∑
m=1

(
S̃2m+2

2m+ 2
(z− zj )

2m+2

)}
(49)

is the absolutely convergent part. The dipole correction term,wdc
φ , can be determined by

noticing that

wψ = ∂wφ

∂nj
, (50)

if µ j = qj (nx j + iny j ). Thus, integrating the dipole correction term for the potential gen-
erated by a dipole results in the dipole correction term for the potential generated by a
monopole. Therefore, for eachj we compute the integral

wdc
φ j (z, zj ) =

∫ zj

0
πµ∗j (z− z′j ) dn′j . (51)

Again using Eqs. (31) and (32),

wdc
φ j = πqj

[∫ xj

0
(z− z′j ) dx′j − i

∫ yj

0
(z− z′j ) dy′j

]
= −πqj

2
(zj − 2z)z∗j . (52)

Note the correction includes a constant term (independent ofz) that does not affect the
derivative of the potential, as well as a term that is linear inz. A potential calculated using the
correction term given in Eq. (52) is periodic in its real part. Notice also it is analytic inzsince
it satisfies the Cauchy–Riemann equations. The formula for periodic monopole potential in
a two-dimensional square unit cell in the absence of an applied field is therefore given by

wφ(z) =
N∑

j=1

qj

[∑
k

′′′
log(zj − z+ ζk) −

∞∑
m=1

S̃2m+2

2m+ 2
(z− zj )

2m+2− π
2
(zj − 2z)z∗j

]
.

(53)

The same procedure can be carried out for the case of unit cells with different shapes.
With Cx andCy determined numerically, the resulting expression is given by

wφ(z) =
N∑

j=1

qj

(∑
k

′′′
log(zj − z+ ζk)−

∞∑
m=1

S̃2m+2

2m+ 2
(z− zj )

2m+2

−
[
CR

x xj

(
x− 1

2
xj

)
+CR

y (y− yj )xj −CI
x yj (x− xj )−CI

y yj

(
y− 1

2
yj

)])
,

(54)

where the superscriptsR and I denote the real and imaginary part, respectively.
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We have now formulae for potentials in a periodically arranged cell, which allow us to
calculate potentials using the fast multipole method. Equations (46) and (53) are used in
solving the diffusion problem.

We find that the potentials using the Fourier method and the new method always agree.
This result is illustrated in the simple case of two monopoles in a square unit cell for
simplicity. Consider a square unit cell of area 1 whose center is located at the origin. The unit
cell contains a positive charge of strength 1 located atz1 = x1+ iy1 and a negative charge
of strength−1 located atz2 = x2+ iy2. As before, the unit cell is periodically arranged to
fill the space so that the potential generated by the charges is periodic. In this case, Eq. (53),
along with the fact that̃Sm for m≥ 4 are zero for allm exceptm= 4l , reduces to

wφ(z) = log
(z1− z)9+ 3(z1− z)5− 4(z1− z)

(z2− z)9+ 3(z2− z)5− 4(z2− z)
+
∞∑

m=1

S̃4m

4m

(−(z− z1)
4m

+ (z− z2)
4m
)− π

2

(
(z1− 2z)z∗1 − (z2− 2z)z∗2

)
. (55)

For comparison, the potential computed using the Fourier method is given by

φ(x) =
∑

k,|k|6=0

− 1

(2π |k|)2
2∑

j=1

qj exp(2π i k · (x− x j )), (56)

where k is the wave number vector andx j = (xj , yj ). Figure 2 shows the potentials

FIG. 2. The potential alongx = 0, y = 0, y = x, and y = −x using various expressions for a system of
two charges,q = +1 at(x, y) = (−0.4, 0.3) andq = −1 at(x, y) = (0.2,−0.1). The potential agrees with the
periodic potential calculated using Fourier method only if the conditionally convergent term is replaced by the
dipole correction term.
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computed using Eqs. (54) and (56) for (x1, y1)= (−0.4, 0.3) and (x2, y2)= (0.2,−0.1),
as well as those calculated by Eq. (47) usingS2 given by Eq. (39). It is clear that the po-
tential calculated by the new formula is in agreement with that of the Fourier Method. This
demonstrates the periodicity of the new formulation for the monopole potential (and thus
the dipole potential) in a periodically arranged cell calculated in physical space required
for the diffusion and elasticity problems.

The above formulae are correct for the case where the unit cell, or the unit region of inte-
gration, is square. We will note in Section 5.2 that the transformation used in the multipole
expansion for the elastic field requires a different formulation since the unit cell is not square.

5. IMPLEMENTATION OF THE FAST MULTIPOLE METHOD

5.1. Boundary Integral Method for Diffusion Problem

For details of the FMM itself, we refer the readers to the original paper [11]. We apply
the FMM to solve the boundary-value problem for diffusion. Following [10], we discretize
each boundary,γ j into Nj points, and the total number of distinct boundaries isM . Thus,
the total number of mesh points isN =∑M

j=1 Nj . We solve Eq. (5) subject to the boundary
conditions Eq. (6) and mass conservation. The interfaces are updated in time using Eq. (8).
The normal derivative in Eq. (8) can be expressed in terms of the tangential derivative along
the interface, using the Cauchy–Riemann relation [22],

∂u

∂n
= ∂v

∂s
, (57)

wherev is the harmonic conjugate function ofu.
Following [10], we seek a solution of Eqs. (5) and (6) in the form

u(x) = 1

2π

M∑
j=1

∫
γ j

µ(x′)
∂ log |x′ − x|

∂n′
dx′

+ 1

2π

M∑
j=1

∫
γ j

µ(x′) dx′ +
M∑

j=1

Aj log
∣∣x− x j

int

∣∣, (58)

wherex j
int is a point interior toγ j , taken to be the center of thej -th particle. The following

constraints are then imposed,

M∑
j=1

Aj = 0, (59)

∫
γ j

µ(x) dx = 0 for j = 1, . . . ,M − 1, (60)

µ(x0)− 1

π

M∑
j=1

∫
γ j

µ(x)
[
∂ log |x− x0|

∂n
+ 1

]
dx− 2

M∑
j=1

Aj log
∣∣x0− x j

int

∣∣ = −2 f (x0),

(61)

where x0 is a point on the boundary, andf (x0) is the boundary condition,u(x0).
Equations (58)–(61) have a unique solution. Since these integrals are over the interfaces,
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we need to discretize only the interfaces. To ensure high accuracy, we use 128 to 4096 mesh
points over the interfaces, which are spaced equally over an interface of a particle, but the
number of mesh points is adaptive in time for each individual particle to respond to the
change in the strength of the elasticity and the proximity to the interfaces of other particles.

The discretization of Eqs. (58)–(61) results in a matrix equation of the form(
I − K B

C D

)(
µ

a

)
=
(−2f

0

)
, (62)

whereI is theN by N identity matrix;K is anN by N matrix that represents double layer
interactions;B is anN by M matrix that represents the coupling of the logarithmic terms;C
andD, M by N andM by M matrices, respectively, result from the constraints in Eqs. (59)–
(61). The column vectorsµ, a, andf take the values of unknown double layer densityµi ,
unknown coefficientsAj , and the boundary conditions,fi , wherei = 1, N and j = 1, M .
The equations are solved using the generalized minimal residual method (GMRES) [25],
since a good preconditioner exists [10]. We use the FMM as described in [10] for evaluating
the matrix–vector multiplication required in this process. The number of required iterations
depends on factors such as the particle spatial distribution, but is typically about 20 to
achieve a relative residual error of 10−8.

5.2. Calculation of the Elastic Field

The FMM is generally readily adoptable for the cases where the Green’s function has the
form

G(z, z′) = log(z′ − z), (63)

or its derivative, since an expansion in multipole moments is straightforward. However, the
Green’s function for linear anisotropic elasticity is not in this form. Specifically, the deriva-
tive of the Green’s function whenn = (1, 0, 0) andm = (0, 1, 0) follows from Eq. (18),

gjk,l (x, x′) = −1

2π i

6∑
α=1

±AjαAkα
δ1l + λαδ2l

(x − x′)+ λα(y− y′)

= −1

2π i

6∑
α=1

±AjαAkα
δ1l + λαδ2l

(x − x′)+ aα(y− y′)+ ibα(y− y′)
, (64)

whereaα andbα are the real and imaginary parts ofλα, respectively.
In order to use the FMM, we introduce a new variable

zα = (x + aαy)+ ibαy. (65)

Usingzα, Eq. (64) becomes

gjk,l (x, x′) = −1

2π i

6∑
α=1

±AjαAkα
δ1l + λαδ2l

zα − z′α
. (66)

Now the Green’s function is easily expandable in powers of (zα − z′α), and the FMM can
be applied on thezα plane.
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However, the shape of the unit cell in thez plane is no longer the same as the original
shape. For example, corners of the original square unit cell are transformed to

(s, s)→ (s+ aαs, bαs)

(−s, s)→ (−s+ aαs, bαs)

(−s,−s)→ (−s− aαs,−bαs)

(s,−s)→ (s− aαs,−bαs).

(67)

Thus, a square unit cell is preserved only whenaα = 0 andbα = 1. When the dimensionless
elastic constants are given byc11 = 1.98 andc12 = 1.18 (c44 = 1 by definition), as in the
case for Ni, one of the eigenvalues is given bya = 0.69,b = 0.72 (see Eq. (23)). For this
case, a square unit cell is transformed to a parallelogram which has corners at

(0.845, 0.36), (−0.155, 0.36), (−0.845,−0.36), (0.155,−0.36). (68)

The distance from the center of the cell to the furthest corner (0.845, 0.36) is 0.918 (as
opposed to 0.707 in the case of a square unit cell). The distance from the center to the
closest corner (−0.155, 0.36) is 0.392. Since these two distances are significantly different,
we must modify the definition of “well-separated cells.”

Let dj be the distance from the center of the cell at the origin to the center of the cellj .
Definec = (dj − d)/r , whered is the distance to the furthest corner from the center of a
unit cell. In this particular example,d = 0.918. Using the definition of well-separated cells
given by Greengard and Rokhlin for a square unit cell, we takec > 2 as the condition for
well-separated cells.

Figure 3 shows the well separated cells in relation to the center cell. In the FMM procedure,
a unit cell is also divided into subcells to apply the multipole expansion. The same criteria
described above is also applied when defining neighboring cells and well-separated cells
within the unit cell.

In Section 4, we deferred the discussion of calculating the periodic elastic field. In this
case, the formulae must account for the nonsquare shape of the unit cell. Again, allS̃’s but
S̃2 can be computed using the renormalization method [6]. In doing so, however, attention
should be given to the change of the definition of “well-separated cell,” as well as that of
the shape of the cell, both of which modify the value ofS̃’s. The translationally equivalent

FIG. 3. Definition of well-separated cells for the parallelogram-shaped unit cell fora = 0.69 andb = 0.72.
C and D denote the cell at the center and nearby (not well-separated) cells, respectively. The blank cells are well
separated from center cell. The shape of the unit cell is approximate.
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points must be adjusted according to the shape of the unit cell, also (cf. Fig. 1). ForCx and
Cy, we have

Cx = υ(0.5+ 0i )− υ(−0.5+ 0i ), (69)

Cy = υ(0.5aα + 0.5bα i )− υ(−0.5aα − 0.5bα i ), (70)

whereυ is defined in Eq. (41), and Eq. (43) remains valid. Note that in Eq. (43) for the
parallelogram systemx andy are not equal toR(z) andJ(z). Rather,x andy refer to the
Cartesian coordinates before the transformation; that is

x = <(zα)− aα=(zα)/bα
(71)

y = =(zα)/bα.

6. θ-L FORMULATION

6.1. Formulation

One problem that is commonly encountered in advancing the interface via Eq. (8) is the
stiff time stepping. A simple linear stability analysis yields the condition for stability,

1t ≤ K (1x)3, (72)

where1x is the minimum spacing between points on the interface, andK is a constant.
Since the time step varies as (1x)3, explicit time stepping is very expensive. To remove
the stiffness, we adopt the small-scale decomposition technique, or theθ -L formulation,
introduced by Hou, Lowengrub, and Shelly [13]. Below we summarize the method briefly,
and refer the readers to the original reference for more details.

Consider a particle interface,γ , that is described by a set of pointsx(α, t), whereα
parameterizes the curve. The evolution ofγ is prescribed by the normal velocityV . Instead
of evolving the coordinate of thei -th boundary point of thej -th particle, (x j

i , y j
i ), we keep

track of the center of mass coordinate (x j
c , y j

c ), the total arc lengthl j , and the angleθ j
i

between the tangential vector at the interface at thei -th point and thex-axis. The center of
mass is updated by advancing the interfacial points explicitly with normal and tangential
velocities and calculating the center of mass from the new interfacial points. Using the sign
and direction convention consistent with [13], the evolution of the total arc length and the
shape is given by

∂l j

∂t
= − 1

l j

∫ 2π

0

∂θ j

∂α′
V j (α′) dα′, (73)

∂θ j

∂t
= 2π

l j

[
∂V j (α)

∂α
+ ∂θ

j (α)

∂α
T j

]
. (74)

Here,T j is the tangential velocity introduced to keep the spacing of the boundary points
constant and is given by

T j (α, t) = T j (0, t)+
∫ α

0

∂θ j

∂α′
V j (α′) dα′ − α

2π

∫ 2π

0

∂θ j

∂α′
V j (α′) dα′, (75)
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where the arbitrary change of frame,T j (0, t), is taken to be 0. Equation (73) is not
limited by the stability condition of Eq. (72). On the other hand, Eq. (74) is subject to
the stability condition since it describes the change in the shape of the curve, which is the
source of the stiffness. The stiffest part of Eq. (74) is linearizable in Fourier space. We
found that the following scheme works best to stabilize the time advance while minimizing
smoothing,

∂θ̂ j (t, k)

∂t
= −1

2

(
2π

l j

)3

|k|3θ̂ j (t, k)+ N̂ j (t, k), (76)

where

N j (α, t) = 2π

l j

(
∂V j

∂α
+ ∂θ

j

∂α
T j

)
− 1

2

(
2π

l j

)3

H
[
∂3θ j

∂α3

]
; (77)

the hat denotes the Fourier transform,H is the Hilbert transform, andk is the wave number. In
this form, an implicit discretization of the first term on the right-hand side is straightforward,
enabling us to avoid the time-step constraint. We discretize Eq. (76) using the following
scheme,

θ̂
j
i (t +1t, k)− θ̂ j

i (t, k)

1t
= −1

2
(2π)3|k|3

[
θ̂

j
i (t +1t, k)

(l j (t +1t))3
+ θ̂

j
i (t, k)

(l j (t))3

]
+ N̂ j (t, k), (78)

and Eq. (73) using first-order explicit scheme,

l j (t +1t)− l j (t)

1t
= F j (t), (79)

whereF j (t) represents the right-hand side of Eq. (73) for thej -th particle at timet . In
equilibrium (i.e., whenθ̂ j (t +1t, k) = θ̂ j (t, k)), Eq. (78) satisfies the necessary condi-
tion that the sum of the two terms in the right-hand side must vanish as the right-hand
side of Eq. (76) becomes zero. Note the interfacial lengthl j is updated via Eq. (73) be-
fore the shape is updated. This is required by the fact thatl j (t +1t) appears in Eq. (78).
Higher-order schemes for shape update have been suggested for the above time integra-
tion [14, 18]. However, we have chosen to use the schemes described above because
some particles may disappear during a time step in our simulation, which may cause a
large, local, artificial change in the concentration from one time step to the next. Thus,
using the value of normal velocity from the previous time step may have adverse effects.
We take the mesh spacings to be constant inα on an individual body during the update step,
although they are adaptively refined or coarsened during the evolution to assure adequate
resolution and optimal efficiency.

6.2. Time Step for Diffusion Problem with Elasticity

The θ -L formulation removes the stiffness from the curvature part of the boundary
condition. If the interfacial motion is driven only by curvature, the method works quite well
as such motion tends to smooth out high curvature regions. However, in our case the elastic
stress can also drive the interfacial motion. We found that the time step that is appropriate
for the interfacial-energy-driven case can cause significant inaccuracy in systems with large
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stress effects. In particular, the changes in the shapes were underestimated at locations
where elastic stress was strong. To remedy this, we introduced a second-level time step,
1t2, such that

1t2 = 1t/Nloop, (80)

where1t is the first-level time step, as used in theθ -L formulation, which must be reduced
as the stress effects increase, andNloop is the number of loops over the implicit time stepping
of the shapes, as given by Eq. (78), within one first-level time step. During one first-level
time step,V j (α) is fixed while the shape is evolved via Eq. (78) using intermediate values
of l j . The termNloop should be as large as possible without causing significant change in the
normal velocity so that the first-level time step can be as large as possible while minimizing
errors. Fortunately, the potentials are not very sensitive to changes in the shapes of particles.
We takeNloop to be 100, which worked best in our test runs. We also made extensive test runs
for the first-level time step. We find the following dimensionless time-step size optimizes
the balance between numerical convergence and efficiency,

1t = 〈r 〉
3

〈r0〉3 Max[6 · 10−3 exp(−0.5756〈L〉), 2.5 · 10−4], (81)

where〈L〉 is the system’s averageL defined in Eq. (7),〈r 〉 is the average radius, and
〈r0〉 is the initial average radius of particles. Note for high〈L〉, 1t can be as small as
2.5 · 10−4, making the second-level time step,1t2 = 2.5 · 10−6, almost as small as the time
step required by the explicit time stepping. This requirement is a direct result of the high
angular dependence of the elastic field and the resulting growth of the higher-order terms
that are truncated in Eq. (78) [18]. In the absence of stress,1t of 2.5 · 10−3 was adequate
without the use of the second-level time step [2]. By adopting the second-level time step,
we were able to decrease the computation time by two orders of magnitude.

Leo, Lowengrub, and Nie have suggested a different time-step scheme in their recent
paper [18]. We are currently examining the scheme to determine whether it is appro-
priate in our calculation. Their suggestion may further improve the performance of the
code.

7. NUMERICAL SIMULATION

Combining all of the methods outlined above yields the following procedure:

1. Initialization: set up initial sets of interfaces and initialize variables.
2. Set the first-level time step,1t , as a function of〈L〉 (see Eq. (81)).
3. Determine the elastic field along the interfaces of the particles.
4. Calculate the boundary conditions on the interfaces.
5. Solve the diffusion equation with the above boundary conditions.
6. Calculate the harmonic conjugate function and the normal velocity.
7. Update the location of the center of mass.
8. Update the interfacial arc lengths of the particles.
9. Using the second-level time step(=1t/Nloop), update the shapes of particles via the

tangent angle using the intermediate values of the total interfacial arc lengths. RepeatNloop

times while holding the normal velocity fixed.
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FIG. 4. The initial microstructure, consisting of 4000 circular particles. The box corresponds to the compu-
tational domain.

10. Using the center-of-mass locations from Step 7, the interfacial lengths from Step 8,
and the shapes from Step 9, calculate the updated locations of interfacial points.

11. Repeat Steps 2–10.

A multiparticle system containing various sizes of particles will not reach an equilibrium
state because of the diffusion of mass between the particles. We start our calculations
using 4000 circular particles (see Fig. 4). In Fig. 5, we show the time sequence of the
microstructural evolution of a system with〈L0〉 = 〈L(t = 0)〉 = 1. Extensive quantitative
analyses of the results are performed, and are published elsewhere [32, 33]. Here we focus
on the qualitative nature of the results.

When only one particle exists in the system, a particle evolves toward its equilibrium
shape, which depends on the parameter,L. The equilibrium shapes of an isolated particle
have been computed for a Ni-Al system by Thompson, Su, and Voorhees [30]. They found
that the shape is a circle whenL = 0 and becomes a four-fold symmetric square-like shape
asL increases. WhenL exceeds the critical value 5.6, a bifurcation takes place and two-fold
symmetric (elongated) shapes become the energy-minimizing equilibrium shapes. In our
multiparticle simulation, we observe a similar behavior. When elastic stress is negligible,
the particles are circular (or nearly circular). During coarsening in many-body systems,
however, the shapes of the particles do not reach equilibrium, but rather the mass diffusion
from surrounding particles and interparticle elastic interactions cause the shapes to be
slightly distorted from the equilibrium shape.

The particles become nearly four-fold symmetric shapes, even at a low〈L〉 of 2.0.
A magnification view (5x) is provided in Fig. 5, top right, to show the shape variation:
smaller particles maintain nearly circular shapes while larger particles tend to achieve more
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FIG. 5. The microstructures over the computational domain (left) and selected regions magnified from cor-
responding microstructure. The values of〈L〉 are 2.0, 4.1, and 6.1, corresponding tot = 13.5, 152.2, and 512.1,
from the top to the bottom. The number of remaining particles are 1066, 229, and 104, respectively. The magnified
regions are noted by boxes with white outline on the left.

four-fold, square-like shapes. In addition, we find particle alignment along the vertical and
the horizontal directions which correspond to the elastically soft〈100〉 directions of the
crystal. The shape changes of the particles are mainly due to the elastic energy generated
by the particle itself, rather than by the elastic interaction, and the particle alignment is due
to the configurational forces (or equivalently elastic interaction energy) generated by other
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particles [28]. An exception to this is when two particles or more are very close; then the
elastic interactions can cause the shapes to be distorted significantly.

Although the effects of elastic self-energy are obvious from the shape change, the align-
ment of particles is not as clear at〈L〉 = 2. This is likely to be because the elastic interaction
energy is typically a small fraction of the total elastic energy at the low area fraction we
are examining. However, early signs are seen where chains establish themselves by chance
as a result of fluctuations in the initial configuration. Elastic interaction helps to stabilize
such conformations, and they survive for a long period of time at the expense of particles
not aligned with others.

By 〈L〉 = 4.1, most particles are aligned with several others, making the microstructure
consist of more ordered congregations of chains. Particles in the middle of chains are
stabilized by the elastic interaction energy, and they may grow even if they are smaller
than the surrounding particles. In addition, a chain may grow as a whole at the expense of
isolated large particles or smaller chains. Slight elongation (a non-four-fold shape) seen in
many particles is due to three factors: (1) large particles haveL > 5.6 and two-fold shapes
have lower energy in that case, (2) the elastic interaction with another particle causes the
particle to elongate itself along the axis of alignment, and (3) aligned particles growing at the
expense of close neighbors do so by extending themselves toward these neighbors. Again,
a magnified view (middle right in Fig. 5) shows the shape changes. As a result of particle
migration and preferential growth, particle interfaces may become very close to that of their
immediate neighbors. It may seem that some of the interfaces of particles are touching or
connected. However, as shown in the 7x magnified view at〈L〉 = 6.1 (bottom right in Fig. 5),
the separations between interfaces are maintained and well resolved even at this late stage.
The separation is maintained throughout the runs by the elastic repulsion between particles
that occurs at a short distance. Using the materials parameter of Ni-Al, this separation is
large on an atomic scale, and thus coalescence is not important for this system for the range
of 〈L〉 studied. It should be noted, however, that coalescence may become a major effect
at a higher volume fraction and/or a larger〈L〉. Although we do not allow coalescence in
these simulations, we are currently studying a possibility of a hybrid method that allows
for both high resolution of particle shapes (as in these simulations) and coalescence.

All of these observations are consistent with experimental findings and previous nu-
merical simulations. However, using an initial number of particles as large as 4000, we
are now able to make systematic characterizations of the resulting microstructure to allow
quantitative comparisons to experiments.

Through the analysis of our calculations, we identified various aspects of underlying
processes in complex systems with free interfaces and elastic effects [32, 33]. The analyses
of the calculation results for the case shown above revealed a system that was simpler
than we expected. One such finding was the change in the kinetics of coarsening in these
systems. Using the results, we were able to suggest a new simple picture of coarsening that
depends only on the symmetry of particle shapes. Although our calculations are limited to
two dimensions, the information we obtained will help us understand the effects of elastic
stress on the coarsening processes in real (3D) systems.

8. PERFORMANCE

For 4000-particle runs, one time step takes up to 500 CPU seconds on an NEC NX-4. As
coarsening reduces the number of particles, the computational time decreases significantly.
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FIG. 6. The computational time for calculating the elastic field is plotted against number of points in the
computational domain on a log-log scale. Lines with slopes 1 and 2 are provided to guide the eye.

The total number of time steps required for a complete run depends strongly on〈L0〉,
because of the dependence of the time step on the strength of elasticity. For〈L0〉 = 1 case,
the total CPU time was approximately 18 days. Up to 4000 particle runs are manageable on
workstations with current technology, such as a Hewlett Packard 9000/785, over 10 days to
six weeks, depending on〈L0〉.

We summarize the comparison of performance between the direct sum method (DSM)
and the FMM for the calculation of the elastic field in Fig. 6. The DSM code uses a simple
direct sum to calculate the elastic field via Eq. (13). For this reason, we assume that the
computational domain is isolated (nonperiodic). The FMM code calculates the potential
via Eq. (66) using the FMM modified for the parallelogram-shaped unit cell (without in-
cluding the periodicity). Each point on the plot represents a result from a run. The number
of particles,M , in a run was varied from 50 to 550, while the number of mesh points on
each particle,n, is varied from 4 to 2048. The tests were performed only for the purpose
of benchmarking, and we disregard the fact that some of the resolution settings are not
adequate to obtain accurate results. The computational time,Tc, for calculating the elastic
field for a given configuration is plotted against the total number of mesh points,N = Mn,
on a log–log scale to show the scaling ofTc with N. Lines with slopes 1 and 2, which are
indicative ofO(N) andO(N2) behavior, respectively, are plotted also to guide the eye.

For a small total number of points, the direct sum method is faster than the FMM because
of the larger overhead in computational cost associated with the FMM. At very smallN,
the scaling is obscured by the computational overhead in both methods. Therefore, any
deviation from scaling at smallN should be ignored. At a few thousand points, the com-
putational times for both methods are similar, and theO(N2) behavior is evident in the
DSM data. For the FMM, the scaling becomes clear only when a very large number of mesh
points is employed. ForN > 10000, however, the overhead effects become negligible, and
O(N) behavior is clearly exhibited. The computational cost of the FMM is approximately
given byCFMMN, where the coefficientCFMM is significantly greater thanCDSM and where
CDSMN2 approximates the computational cost for the DSM. However,CFMM is sufficiently
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small enough that the FMM becomes much more efficient for the number of mesh points
relevant for our simulation.

Our calculations typically have 4000 particles initially, each described by 128 to 256
points (for L ≈ 1), resulting inN = 512000 to 1024000≈ 106. The elastic portion of
the calculation takes approximately 40 CPU seconds each (first-level) time step forN =
512000. The direct sum method would have taken about two orders of magnitude longer,
4400 CPU seconds. Therefore, the simulations would not have been possible without using
the FMM for the elastic field calculations.

9. CONCLUSIONS

A new set of numerical methods has been presented to accurately and efficiently simu-
late the evolution of microstructure in elastically stressed solids. These involved boundary
integral methods, versions of the fast multipole method, and various time-stepping tech-
niques. The result is a numerical method that can be employed to increase by orders of
magnitude the number of particles simulated in a computational study of the evolution of
microstructure.

In the process of developing the method, a number of issues were addressed:

1. A form for potentials in periodically arranged cells that is applicable in situations that
require a general scheme to calculate a periodic potential via a summation in physical space.

2. An FMM for anisotropic linear elasticity that for largeN is orders of magnitude faster
than a direct sum method. The relevant dipole correction terms are introduced for unit cells
that are parallelograms.

3. Introduction of a second-level time step for updating the shapes of particles. Although
this approach should be used cautiously, it is possible to speed up the calculations by two
additional orders of magnitude without a significant loss of accuracy.

4. A variable first-level time step as a function of the relative importance of the stress
with respect to the interfacial effects.

Many of these techniques will have applications in other contexts as well.
The details are worked out specifically for our two-dimensional study. A corresponding

simulation in three dimensions remains a challenge because of further complications such as
the lack of analytic Green’s function for the anisotropic elasticity problem [31]. However,
the general ideas, such as incorporating the FMM, efficient time-stepping, and periodic
potentials, can be extended for use in three-dimensional studies where similar issues need
to be addressed.
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