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We present a set of numerical methods for simulations of microstructural evolution
in elastically stressed solids. We combine three powerful tools to achieve computa-
tional efficiency: the boundary integral method to provide excellent resolution, the
fast multipole method to reduce computational cost, and the small-scale decompo-
sition technique with a two-level time-stepping scheme to remove the stiffness from
the time advance. Although we apply these methods to study the topic of our interest,
the details of how they are implemented can be useful in many other situations. We
extend the fast multipole method to calculate the anisotropic stress field in periodic
two-dimensional domains and in doing so address issues associated with the con-
ditional convergence of the summations. In addition, we introduce a new formula
for the potential in periodically arranged two-dimensional cells in the absence of an
applied field through a summation in physical space without using the Ewald sum.
Furthermore, we implement a time-stepping scheme that enables us to speed up the
calculation by an additional factor of 100 over a straightforward implementation of
the small-scale decomposition technique. The computational complexity scales as
the number of mesh pointd, and thus we are able to empldy ~ 500, 000 in a
typical calculation. © 2001 Academic Press

Key Wordsfast multipole method; boundary integral method; Ostwald ripening;
periodic potential; anisotropic elasticity.

1. INTRODUCTION

Microstructures consisting of matrix and particle phases in metals are of industrial
terest since the sizes and shapes of the particles can control the physical characterist
the material. In such materials, thermomechanical processing is employed to achieve
desired properties. These processes typically involve aging at elevated temperatures v
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solid-state diffusion is significant. Under these conditions, the second-phase particles
grow and their average size increases via a process known as Ostwald ripening, or coa
ing. The coarsening process is well understood theoretically when the only driving force
the coarsening process is the surface energy. In this case, the system evolves to redu
total interfacial energy, which is linearly proportional to the interfacial area. Therefore, t
evolution proceeds by larger particles growing at the expense of smaller particles. Lifst
and Slyozov [19] and Wagner [36] (LSW) described this process in the limit of a ze
volume fraction of particle phase and found a self-similar growth characterized by a sin
length scaleR(t), whereR is the average particle size, that varies-a&/3. Systems with
nonzero volume fractions have also been studied; see [1, 20, 21] and references the
These theories find that the temporal power laws for the average particle size predi
by LSW remain unchanged by a nonzero volume fraction; however, the amplitudes of
temporal power laws were found to depend on the volume fraction of coarsening ph:
Specifically, the constan€ in R3(t) ~ Kt is predicted to increase monotonically with the
volume fraction.

In two-phase solid systems, the difference in the lattice parameters of the matrix :
particle phases, or the misfit, gives rise to a long-range elastic field. This contributes
ditional energy to the system. It is not known quantitatively how elastic stress modifi
the statistically averaged properties of the Ostwald ripening process, but much qualita
information indicates that the changes are significant. The effects of elastic stress on
evolution of the microstructure have been studied extensively in model alloys such as Ni-
where there is a misfit between the particles and the matrix. Experimental results cle
show changes in the microstructure as elastic energy becomes important (see, for exat
[4]). They show microstructures consisting of particles with various shapes and symmet
that depend on the magnitude and symmetry of the elastic stress. For example, in c
alloys with a dilatational misfit, such as the Ni-Al system studied by Ardell and Nicholso
the particle shape changes from a sphere to a cuboid as the relative importance of the e
energy (proportional to the volume) to the interfacial energy (proportional to the interfac
area) increases along with the average particle size [4]. At still larger sizes, the cubc
change to plate-like or rod-like shaped particles. Furthermore, at the same time the part
align themselves along the elastically s(f00 directions of the crystal. This change in
the microstructure modifies the properties of the material, and finding a practical mett
to control it is an important issue in the metallurgical community.

The evolution of microstructure in elastically stressed solids has been well studied
a number of numerical techniques. Computational simulations of particle coarsening
elastically stressed solids have been performed using diffuse interface models [17, 24
37], Ising models [9, 16], and sharp interface models [14, 35]. They show that the pa
cle shape evolution from spheres to cuboids, and then to plates, is the direct result of
anisotropic elastic energy. The results are qualitatively consistent with experimental resi
In addition, the calculated spatial distribution of the particles is similar to those obsen
in experiments. However, these simulations were performed using relatively small syst
sizes (order of 10 particles in many cases), and they do not provide enough informatio
characterize the microstructure quantitatively, or to determine the evolution of the stati
cally averaged properties of these ensembles. The challenge of extending these calcule
to systems with many thousands of particles is that the shapes of the particles cannc
constrained, but must evolve in a manner that is consistent with the diffusion and stress fi
in the system. Thus, one must solve a multibody free-boundary problem involving diffusi
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and stress fields that evolve with the microstructure. Although phase field methods
advantages, such as the ability to accommodate particle coalescence and disappea
they have difficulties matching the excellent resolution of the interfaces that sharp-interf
models provide in systems with large number of particles. Given the goal of simulati
systems containing large number of particles, we choose the sharp interface formulatic
the problem.

In this paper, we describe the method which enables us to perform large-scale simulat
of elastically stressed solids accurately and efficiently. It is made possible through a cor
nation of advanced numerical methods—the boundary integral method, the fast multiy
algorithm, and a two-level time-stepping technique along with the small-scale decomp
tion, or thed-L formulation—maodified to work together in our specific case. We outline
the method to combine these formulations and give detailed descriptions of modificati
that were made. The methods that we have implemented will be useful for other proble
as well.

2. THEORETICAL BACKGROUND

Consider a two-phase solid system wherein the particles and the matrix possess d
ent lattice parameters, the interfaces between the particles and the matrix are cohe
and the Ostwald ripening process occurs via the diffusion of mass. Following [34], \
nondimensionalize the dimensional concentration fi€ldyy

and the dimensional tim§,, by
t =T/, @
where
- 12
=% ®)
R @

Cw is the value ofC at a flat interface, superscriptsand 8 denote the matrix and particle
phases, respectivelly,is the length scale used in nondimensionalizatigns the capil-
lary length, andD is the diffusion coefficient. The length scdlenay be taken to be the
particle size, or, if many particles are present, either the size of the computational don
in dimensional units or the initial average particle size. All variables in this paper a
nondimensionalized unless otherwise noted. Assuming that the motion of the interface
slow compared to the relaxation time for the concentration field, a good assumption dul
coarseningy in the matrix phase satisfies the steady-state diffusion equation,

Vau(x) = 0. (5)
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We assume periodic boundary conditions for the computational domain for our calculatic
The concentration at the particle—matrix interface is given by the stress-modified Gibl
Thomson equation [12],

u(x):K+L{;[T-E]—T°‘~[E]}, (6)

wherex is the curvatureT is the dimensionless elastic stre&ds the scaled elastic strain,
E is the scaled total strain, andf[ = f# — f* for a quantity f at the interfacelL is a
dimensionless parameter [28] which is defined as

2C a1
L:E 44 ’ (7)
o

wheree is the magnitude of the dilatational misftZ,, is one of the dimensional elastic
constants in this cubic alloy, is the dimensional effective radius of the particle, ani$
the dimensional interfacial energy. By this definition, the dimensionless elastic conste
are normalized taC44, T =1/(Cys¢), E = €/¢, andE = &/¢, wheret, e, andé are the
corresponding dimensional quantities. Here, the effective radius of a noncircular particl
defined as = /A/m, whereA is the area of the (two-dimensional) particle, and we havi
assumed that the lattice parameter of the phases and elastic constants are not functic
composition.

The parametet gives the relative importance of the elastic energy compared to tt
interfacial energy. In each simulation, we assign the refi0s/0 to the system. This
gives the value of. for each particle. Sinck is proportional to the radius of the particle,
(L) increases as time increases. Therefore, the stress effects become more importz
coarsening proceeds.

The evolution of the interface is given by the interfacial mass balance,

ad
Voo =, ®)

whereV is the normal velocity of the interfacg,is a point on the interface, andis the
coordinate along the normal We also constrain the total volume of particle phase to b
constant,

M
Z/ V(x)ds; =0, (9)

J:]_ Yi

whereds; is the arc length element of the interfaggof the j-th particle andM is the
total number of particles. After solving Eq. (5) with the boundary condition Eq. (6), th
interface is updated using the normal velocity given in Eg. (8). When a particle becon
very small ¢ < 0.05(r), equivalent to 0.25% in area compared to that of the average-siz
particle), it is assumed to have disappeared and is removed from the calculation. The r
conservation constraint (Eq. (9)) implies that the area fraction of particle phase reme
constant. We therefore make a very small adjustment to the area fraction of the part
phase to compensate for the removed particle area.
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In mechanical equilibrium, the stress field satisfies

3

> Tj=0 i=123 (10)
j=1

with the boundary conditions at the matrix—particle interfaces

3
DITjIn; =0 i=123 (11)
j=1

[Ul =0 i=123 (12)

whereU; is thei-th component of the displacement vector, and the comma denotes ¢
ferentiation in the direction indicated by the index. We take the system to be elastic:
homogeneous and anisotropic. This enables us to obtain the stress and strain fields
interfaces through the Green'’s function corresponding to Eqgs. (10)—(12) [23]. The stre:
and strains that appear in Eq. (6) are then calculated by determining the scaled displace
gradient along the interface,

M
Uik =Y >

3
n=1i,l,m=

Cilmm/ Gij.k(X, x)n ds, (13)
1 Yn

wherecjy is the dimensionless elastic constant tensor with cubic symmgfrys the
dimensionless anisotropic elastic Green'’s function tensandx’(s’) are points on the
interface, ands’ is the arc length coordinate. The stress and strain are then determil
using the derivatives of the displacement and the constitutive relations of anisotropic lir
elasticity, namely,

3
Tij = Z Gijki Ex, (14)
ki=1
1
Bj = E(Ui,j +Uji), (15)
andE¢ andE/] are given by
Ef = Ef, (16)
Ef = Ef -4, (17)

whereg;; is the Kronecker delta. Other crystal symmetries can be accommodated since
Stroh theory yields an essentially analytic Green’s function in the same form considere
this paper. So far, we have only implemented an extension to a tetragonal misfit, and
have made some simulations with good results.

The set of equations, Egs. (5)—(13), is to be solved for a system of particles with arbitr
shapes. Complications arise because of the nonlinear nature of the boundary cond
Eq. (6), not only as a result of the curvature dependence in the Gibbs—-Thomson equa
but also as a result of the elastic stress. (The field equations are linear.) We adopt
boundary integral technique to solve this free-boundary problem accurately and efficier
Further details are given in Section 5.1.
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3. ELASTIC FIELD

An efficient implementation of the quadrature shown in Eq. (13) requires knowledge
the Green’s function. In two dimensions, a particularly advantageous representation of
Green's function can be obtained using Stroh theory [5],

6
1
gk(X = X) = === > £ A, Ak IN(M - (X = X) + AN - (X = X)), (18)
2ri ot
wherem = (cos#, sind, 0), n = (—sinY, coss, 0), andd is the angle between theaxis

and the vectom. Note thatm andn are orthogonal and denotes different sets of eigen-
values and eigenvectors, anda, satisfy the following equation,

3

Z Cijkm (M; + Ao M) (M + A Nm) Ay = 0. (19)
i,k,m=1

Equation (19) can be transformed to a six-dimensional eigenvalue problem by introduc
the associated vectar, [5],

3

L« = Z =0 Cijkm (Mm + Ao Nm) Axq, (20)
i,k,m=1
or equivalently,
1
Liw = Z —M; Cijkm (Mm + Ao Nm) Aka» (21)
i.k,m=1 =

with the normalization condition,
3
1
> AjaLje = 5. (22)
j=1 2

Thus,A, anda, are the eigenvector and eigenvalue, respectively.

In our calculation, we need the eigenvalues,a = 1, 2, ..., 6, and the products of the
eigenvectors componenta? A%a, and Ay, Ay, . For cubic symmetry, these can be found
analytically form = (1, 0, 0) andn = (0, 1, 0), resulting in six eigenvalues. Fay = +i,
all relevant products of\;,’s are identically zero, and therefore the associated terms do n
contribute. For the rest of the eigenvalues,

Ae=Ff+9g, f—9g, —-f+9g,—f—gqg, (23)
where
(C11 4+ C12)(2C44 — C11 + Cy2)
f= , 24
\/ 4C11Cys (24)
g= (—C11+ C12)(2C44 + C11 + Cy2) ‘ (25)
4C11Cyq
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Ci;’s are contracted (Voigt) elastic constants [23], and

X (Cas + C1122
Aix _ ( a4+ C11 a)’ (26)
2C11C44(1 — A.i)
Ae(C11 4 Caad2
A2 = (Cu+ 44/\(1)’ 27
2C]_1C44(1 — )»3)
22(Cp+C
Ay Aoy = 2a(Cr2+Caa) (28)

© 2C11Caa(1—22)°

The eigenvalues and the eigenvectors need to be computed only once at the begir
of the simulation for the specified elastic constants. Although there are four contribut
eigenvalues, two sets of two terms give the same results. Therefore, the integral in Eq.
with the Green’s function defined in Eq. (18) must be performed only twice, not four time
The elastic interaction is long ranged, and thus we cannot impose a cutoff distance for
interaction. Consequently, the Green’s function in Eq. (18) needs to be integrated for
pairs ofx andx’. The direct summation would result in a complexity @ N?), where
N is the number of mesh points, making a large-scale simulation impossible. Therefor
modified fast multipole method (FMM) is adopted to remove this obstacle.

4. THE POTENTIAL IN A PERIODICALLY ARRANGED CELL

Since the FMM sums in physical space, it is nhecessary to determine potentials i
system with periodically repeated cells. The potential resulting from long-range interacti
between particles and their periodic images is often important. Typically, when potenti
are calculated in physical space, the Ewald sum [3] has been applied. The method invc
summation in both physical space and in reciprocal (Fourier) space, and there are a
parameters that need to be chosen depending on the specifics of the simulated sys
Schmidt and Lee derived a method to convert the FMM potential to one consistent with
Ewald sum by comparing the expressions resulting from each method [26]. They obtai
a correction term for a three-dimensional problem in terms of multipole moments a
spherical harmonics. In another work, the periodic contribution to a sum was calcula
via FMM summation over the repeated (image) cells [8]. While the FMM is very efficiel
in calculating sums in a large domain, this approach requires more computational t
than that required for a calculation over one cell. In another approach, fictitious char
are added to cancel the net dipole moment in the unit cell so that the correction te
becomes zero, thus obviating the need to correct for the dipole-induced surface charg
the unit cell [15]. Although the potential resulting from this approach does give the corre
derivative of the potential that takes into account the potentials generated by the im
cells, the potential itself is shifted by an arbitrary constant. Therefore, this approach is
appropriate in some situations, such as energy calculations, where the absolute value «
result is important. In this section, we develop compact formulae for periodic potenti
resulting from monopoles and dipoles in two-dimensional space. The new method is m
more straightforward compared to the previous approaches and greatly improves the al
to work with numerical methods such as the FMM. The additional computational time
account for the interaction with periodic images is small as it is included in the analy
expression for the potential in terms of a multipole expansion. There are no parame
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to adjust to achieve certain accuracy because it is an exact formula (other than the u
truncation of multipole terms). We then employ these expressions to derive the potent
in periodically arranged cells for the elasticity, as well as for the diffusion problems.

We assume that the computational domain of unit size is repeated periodically to fill
two-dimensional space. In the absence of an applied field, the potential is periodic v
a period of unity, because of the effects from all particles in the repeated cells. We m
be able to calculate these effects without directly summing the actual potentials from e
particle in the repeated cells. A multipole expansion can be used to carry this out, bt
straightforward calculation results in a potential without proper periodicity. As we addre
later, this is due to the conditionally convergent term; that is, the numerical value of t
term depends on how the sum is taken, and it requires special attention to reach the co
result for a particular application.

Consider a potential atgenerated by chargeg at locationsx;,

N
$00 =Y _qjloglx; — x|, (29)
j=1

and by dipoles with strength; and directiom;,
Nod
Y0 => pi5 —loglx; —xl, (30)
i=1 J

wheren; is the coordinate along;. Here,n;j, andnjy, are thex- andy-components ofi;,
respectively, given by

BXI'
ix = —, 31
Njx an, (31)
aYj
niy = —. 32
¥ = 5n, (32)

Writing in complex form, the potentials can be expressed as

N
we(Z) =Y _dgjlog(z; — 2), (33)
=1

and

N
9
wy (2) = ; Pi 50, log(zj — 2)

N "
J
= E , (34)
-1 Zj —Z

wherex = (X, y) is expressed in terms of complex variable: x + iy, andu; = pj(njx +
injy) is the complex dipole charge. Note that the real paipfz) andwy, (2) is identical
to ¢ (x) andys (x), respectively.
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We first focus on the dipole potentiab,, (z). Assume the sources are located in a uni
cell which is repeated to fill the two-dimensional space completely; et the location of
the center of thé-th cell, and we apply the multipole expansion. Splitting the summatio
in three parts, a term corresponding to the central cell, a sum for the surrounding eight
(nearby cells) and another for the rest (well-separated cells),

wy (2) = ZZZ, ey

_ - < Z'#_,_ZH#) (35)
- zj -z Zj — 2+ &k zj—z+ )

k k

Here, the summation ovérfor the nearby cells is denoted By’ and the summation over
the rest (well separated cells) By”. The last term in the right-hand side of Eq. (35) is
rewritten as a multipole expansion,

" 1 N 1 2=z \"
— 4
N o) .
= > Snaz—z)™ (36)
=1 m=0
where§,, is the (partial) lattice sum,

~ n 1

Si=2 (37)
Sk

This lattice sum excludes the part that is due to the nearby cells in the usual (compl
lattice sum, which is given by

1
S=3 38
25 %9

in which the sum goes over all cells other than the one at the originSélbut S; can

be computed using the renormalization method [6]. For a square uniSgeibr m = 4,
wherd is an integer, converges absolutely to nonzero real values, which have been tabul
in [6]. In addition, bothS; andS,, are zero for alm exceptm = 2 andm = 4! in this case.
The value of§,, depends on the shape of the unit cell since the part that is abs&nt in
is shape dependent. Computing the valueSpfs not as straightforward as this is not
absolutely convergent, and the value depends on how the sum is computed. For exa
[7, 11],

0 circular or square shape of summation
S =< =w x-direction first (39)
—m  y-direction first
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In the first case, the symmetry of the summation is taken to be either a circular or squ
shell, retaining the symmetry betwe&n and y-directions. In the second and the third,
the summation shell is a strip aloxg and y-directions, respectively. In addition to this
convergence issue, we also note that the potential for a unit dipole in the form of Eq. (:
where the last term is replaced by Eq. (36) is not periodic for any val@g dhe treatment
of the term, therefore, depends on the physics of the problem under consideration. T
we separate the term that contafs Since for the geometry we consid8y, are zero for
oddm,

/; & CooN2mil & o
+§k: Z, — 7+ & +ZS’2m+2(Z zj) + S(z ZJ)>.

m=1

N 1
wy (2) = ZMJ <Z' —
i=1 !
(40)

The problem of conditional convergence in computing the potential in periodic cells h
been studied in the context of the electrostatic energy in ionic crystals. We follow a simi
approach suggested by Smith [27], and replace the last term in Eq. (40) with a she
dependent dipole correction term, which can be determined given the shape of the unit
Rather than calculating this term via a complicated analytic method, we will take advant:
of the linearity of the term to impose periodicity. We now limit our discussion to the ca:
where the unit cell is square. (The corresponding details for the parallelogram-shaped
cell needed in calculating the elastic field are given later in Section 5.2.) Forthe square |
cell, we consider a region defined by four corners;, —32), (-3, 3), (3. —3), and(3, ).
Without loss of generality, we take two pairs of translationally equivalent points (cf. Fig. 1
and calculate the potential (excluding the term contaifsgt these points. To calculate a
unit dipole correction, consider a dipole of unit strength<1) at the origin for simplicity.
Let v(2) be the potential generated by the dipole excluding the conditionally converge
term,

T 1]
TR AT
T [
o /.\), ././,(E{)./.,

FIG. 1. Example definition of translationally equivalent points, (A) for the square unit cell (for calculatio
of the diffusion field) and (B) for the parallelepiped unit cell (for calculation of the elastic field). C and | deno
the central unit cell and repeated image cells, respectively. Paiatelb are an example of a translationally
equivalent pair in the-direction, whilec andd are one in the/-direction.
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1 ro 1 .
V@) =+ > Tt > Siny?™ (41)
k m=1

We suggest the dipole correction term in the form

=z

w$°(z) =— Z (M COX — X)) + R(ujCHY —¥))) (42)
=1
so that
w(z)=§Nj e P +§oojéz 2(z— )™
' j=1 J Zj—z 75—zt (o " ]
_[m(l/«jcx)(x_Xj)‘i‘m(l/«jcy)(y_Yj)]}: (43)

whereCy andCy are the difference ob at the translationally equivalent points in tke
andy-directions, respectively,

Cy = v(0.5+ 0i) — v(—0.5+ 0i),
Cy = v(0+0.5i) — v(0— 0.5i).

Here, the translationally equivalent points are taken tobet+0.5 andz = +i0.5 as shown
inFig. 1. It should be noted th&t andC, can be complex numbers. Evaluating numerically
Cx andC,, for the square unit cell, we have

Cx =—m, (44)
C, =in. (45)

Therefore, we have for a potential resulting from dipoles in periodically arranged tw
dimensional square unit cells in the absence of an applied field,

N [e9)
wy(2) = Z (Z ) B Z“’J Somi2(z — 2j)*™? +Tu(z - z,-)), (46)

o\ - zta o

where the conditionally convergent term has been replaced with a dipole correction te
wgc(z, zj). The term>_"" denotes summation ovkifor the nearby cells and the cell at the
center (i.e., over the nonwell-separated cells).

Similarly, we now calculate a corresponding expression for the potential generated
monopoles. A straightforward expansion together with charge neutrality (which for t
diffusion problem ensures that the area fraction of particle phase remains constant) gi\

N
wy(2) = qu'{z log(zj — z+ ¢k)
j7

S2m+2 \2mA-2 _% 532
_Z<2m+2 _z) ) 2(2-7) } 47)
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Again, the conditionally convergent term is separated from other terms, and is replacec
the dipole correction term. That is,

wy(2) = wi(2) + wy(2), (48)
where
N n ° gz
wi'2) =Y q; {Z log(zj —z+ &) — <2m”’;22 (z- z;)z’“”) } (49)
j=1 k m=1

is the absolutely convergent part. The dipole correction temgﬁ, can be determined by
noticing that

. 8w¢

= , 50
Wy on, (50)

if u; = q;(nyj +inyj). Thus, integrating the dipole correction term for the potential ger
erated by a dipole results in the dipole correction term for the potential generated b
monopole. Therefore, for eaghwe compute the integral

Zj
wii(z,z)) = / T (z—2Z))dn. (51)
0
Again using Egs. (31) and (32),
dc . / ’ ; ¢ / q; %
wyj = 70 (z—2Z)dxj —i (z—zj)dyj Z_T(Zj - 22)Z. (52)
0 0
Note the correction includes a constant term (independem} tifat does not affect the
derivative of the potential, as well as a term that is linear i potential calculated using the
correction term given in Eq. (52) is periodic in its real part. Notice also it is analyzisimce

it satisfies the Cauchy—Riemann equations. The formula for periodic monopole potentie
a two-dimensional square unit cell in the absence of an applied field is therefore given

2m+ 2

m=1

N 0 &
wy(2) = qu [Z log(zj — 2+ &) — Z Som+2 (z—z)®™2 %(zj - 227} |.
=1 k
(53)

The same procedure can be carried out for the case of unit cells with different shaj
With C, andC, determined numerically, the resulting expression is given by

N 00 &
Sz
wy(2) =;qj<zk: log(z; —z+§k)—22m+2(z—zj)2m+2

m=1
R 1 R | | 1
— [CXX; X = 5% +CJ(y —ypXx; = Cyyj(x = X)) — Cyy;j y =5V ,
(54)

where the superscripR and| denote the real and imaginary part, respectively.
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We have now formulae for potentials in a periodically arranged cell, which allow us
calculate potentials using the fast multipole method. Equations (46) and (53) are use
solving the diffusion problem.

We find that the potentials using the Fourier method and the new method always ag
This result is illustrated in the simple case of two monopoles in a square unit cell -
simplicity. Consider a square unit cell of area 1 whose center is located at the origin. The
cell contains a positive charge of strength 1 locater] at x; + iy; and a negative charge
of strength—1 located at, = x, + iy,. As before, the unit cell is periodically arranged to
fill the space so that the potential generated by the charges is periodic. In this case, Eq.

along with the fact tha§,, for m > 4 are zero for alin exceptm = 4!, reduces to

wy(2) =

+(2z—2)") - %((Zl

log

(z1—-2°+3(z1— 2)° -

4(z1 - 2)

(22— 2°%+3(22—2)°

-4z, - 2)

—22)Z; — (2, — 20)73).

+) % (~@—z)"
m=1

(55)

For comparison, the potential computed using the Fourier method is given by

¢(X) =

where k

>, -

k. [k|£0

is the wave number vector and

potential

-3 .

o) New method
— Fourier method

-0.4

-0.2 0.0 0.2

y along x=0

potential

-0.2 0.0 0.2 0.4

x along y=x

potential

potential

1
(2 |k|)? 4 qu exp2rik - (X — Xj)),

-0.2 0.0
x along y=-x

0.2

0.4

(56)

= (Xj, yj). Figure 2 shows the potentials

FIG. 2. The potential alongc =0, y =0, y = X, andy = —x using various expressions for a system of
two chargesq = +1 at(x, y) = (—0.4,0.3) andg = —1 at(x, y) =
periodic potential calculated using Fourier method only if the conditionally convergent term is replaced by

dipole correction term.

(0.2, —0.1). The potential agrees with the
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computed using Egs. (54) and (56) fot(y1) =(—0.4,0.3) and o, y2) = (0.2, —0.1),
as well as those calculated by Eq. (47) usthgyiven by Eq. (39). It is clear that the po-
tential calculated by the new formula is in agreement with that of the Fourier Method. Tl
demonstrates the periodicity of the new formulation for the monopole potential (and tf
the dipole potential) in a periodically arranged cell calculated in physical space requi
for the diffusion and elasticity problems.

The above formulae are correct for the case where the unit cell, or the unit region of ir
gration, is square. We will note in Section 5.2 that the transformation used in the multip
expansion for the elastic field requires a different formulation since the unit cell is not sque

5. IMPLEMENTATION OF THE FAST MULTIPOLE METHOD

5.1. Boundary Integral Method for Diffusion Problem

For details of the FMM itself, we refer the readers to the original paper [11]. We app
the FMM to solve the boundary-value problem for diffusion. Following [10], we discretiz
each boundary! into N; points, and the total number of distinct boundarieslisThus,
the total number of mesh pointslis = E}V':l N;. We solve Eq. (5) subject to the boundary
conditions Eq. (6) and mass conservation. The interfaces are updated in time using Eq.
The normal derivative in Eq. (8) can be expressed in terms of the tangential derivative al
the interface, using the Cauchy—Riemann relation [22],

Bu_Bv

on = s &0
wherev is the harmonic conjugate function of
Following [10], we seek a solution of Egs. (5) and (6) in the form
14 . 0log|x’ —x
ux) = o ;/ % dx’
1 , , M i i
+E;/yju(x)dx+§Alog\x—x- (58)

WherexInt is a point interior toy}, taken to be the center of theth particle. The following
constraints are then imposed,

M .

ZAI =0, (59)
=1
/ ux)dx=0 forj=1,...,M -1, (60)
1Q dlog|x — Moo -
M(Xo)—;Z/ M(X){ g' ol 1}dX—ZZA’ log [Xo — Xine| = =2 (x0),
j=177 =1

(61)

where X is a point on the boundary, andl(xy) is the boundary conditiony(xg).
Equations (58)—(61) have a unigue solution. Since these integrals are over the interfa
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we need to discretize only the interfaces. To ensure high accuracy, we use 128 to 4096 1

points over the interfaces, which are spaced equally over an interface of a particle, bu

number of mesh points is adaptive in time for each individual particle to respond to t

change in the strength of the elasticity and the proximity to the interfaces of other partic
The discretization of Egs. (58)—(61) results in a matrix equation of the form

| —-K B\[/p —2f

(e 2)(5)-(3) 2
wherel is theN by N identity matrix;K is anN by N matrix that represents double layer
interactionsB is anN by M matrix that represents the coupling of the logarithmic tesns;
andD, M by N andM by M matrices, respectively, result from the constraints in Egs. (59)
(61). The column vectorg, a, andf take the values of unknown double layer dengity
unknown coefficientsAl, and the boundary conditions;,, wherei = 1, N andj =1, M.
The equations are solved using the generalized minimal residual method (GMRES) [.
since a good preconditioner exists [10]. We use the FMM as described in [10] for evaluat
the matrix—vector multiplication required in this process. The number of required iteratic
depends on factors such as the particle spatial distribution, but is typically about 2(
achieve a relative residual error of £0

5.2. Calculation of the Elastic Field

The FMM is generally readily adoptable for the cases where the Green’s function has
form
G(z,Z) =log(Z - 2), (63)

or its derivative, since an expansion in multipole moments is straightforward. However,
Green'’s function for linear anisotropic elasticity is not in this form. Specifically, the deriv:
tive of the Green'’s function whem = (1, 0, 0) andm = (0, 1, 0) follows from Eq. (18),

) (S]J + )‘-a82|
gjk,l(xvx)_ _Z a —X’)+)»a(y_yl)
_ Z 81 + Aeb2 (64)

X))+ a,(y—y) +ib,(y —y)

wherea, andb, are the real and imaginary partsxf, respectively.
In order to use the FMM, we introduce a new variable

= (X+a.y) +ibyy. (65)

Usingz,, Eq. (64) becomes

, 81 + Aad
Gji (x.X) = 5= ZiAJaAka 1'Za_z, AT (66)

Now the Green'’s function is easily expandable in powerspf{ z,), and the FMM can
be applied on the, plane.
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However, the shape of the unit cell in thglane is no longer the same as the original
shape. For example, corners of the original square unit cell are transformed to

(S,8) = (S+ a,S, b,S)
(—S,8) > (—S+ a,S, byS)
(=S, —S) — (=S — a,S, —h,s)
(s, —S) = (s — a,S, —h,S).

(67)

Thus, a square unit cell is preserved only whgn= 0 andb, = 1. When the dimensionless
elastic constants are given by = 1.98 andc;, = 1.18 (c44 = 1 by definition), as in the
case for Ni, one of the eigenvalues is givengby: 0.69,b = 0.72 (see Eq. (23)). For this
case, a square unit cell is transformed to a parallelogram which has corners at

(0.845, 0.36), (—0.155 0.36), (—0.845 —0.36), (0.155, —0.36). (68)

The distance from the center of the cell to the furthest corner (0.845, 0.36) is 0.918
opposed to 0.707 in the case of a square unit cell). The distance from the center to
closest corner<{0.155, 0.36) is 0.392. Since these two distances are significantly differe
we must modify the definition of “well-separated cells.”

Letd; be the distance from the center of the cell at the origin to the center of thg. cell
Definec = (d; — d)/r, whered is the distance to the furthest corner from the center of :
unit cell. In this particular examplé, = 0.918. Using the definition of well-separated cells
given by Greengard and Rokhlin for a square unit cell, we take2 as the condition for
well-separated cells.

Figure 3 shows the well separated cellsin relation to the center cell. Inthe FMM procedt
a unit cell is also divided into subcells to apply the multipole expansion. The same crite
described above is also applied when defining neighboring cells and well-separated ¢
within the unit cell.

In Section 4, we deferred the discussion of calculating the periodic elastic field. In tl
case, the formulae must account for the nonsquare shape of the unit cell. Ag&is bail
§, can be computed using the renormalization method [6]. In doing so, however, attent
should be given to the change of the definition of “well-separated cell,” as well as that
the shape of the cell, both of which modify the valueSsf. The translationally equivalent

D, /D, D D
DD, D D /D
b D, C/D/ /D

b D,/D,/D,/ D

D DD, /D

FIG. 3. Definition of well-separated cells for the parallelogram-shaped unit cel for0.69 andb = 0.72.
C and D denote the cell at the center and nearby (not well-separated) cells, respectively. The blank cells are
separated from center cell. The shape of the unit cell is approximate.
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points must be adjusted according to the shape of the unit cell, also (cf. Fig. Ok Bod
Cy, we have

Cy = v(0.5+0i) — v(—0.5+ 0i), (69)
C, = v(0.53, + 0.5b,i) — v(—0.58, — 0.5b,i). (70)

wherev is defined in Eqg. (41), and Eq. (43) remains valid. Note that in Eq. (43) for tt
parallelogram system andy are not equal t@i(z) andy(z). Ratherx andy refer to the
Cartesian coordinates before the transformation; that is

X = N(Zy) — 8u(Z0) /by

Y = 3(Za) /Da. (D

6. 6-L FORMULATION

6.1. Formulation

One problem that is commonly encountered in advancing the interface via Eq. (8) is
stiff time stepping. A simple linear stability analysis yields the condition for stability,

At < K(AX)®, (72)

where Ax is the minimum spacing between points on the interface,kansd a constant.
Since the time step varies a&X)3, explicit time stepping is very expensive. To remove
the stiffness, we adopt the small-scale decomposition technique, érlthiermulation,
introduced by Hou, Lowengrub, and Shelly [13]. Below we summarize the method brief
and refer the readers to the original reference for more details.

Consider a particle interface, that is described by a set of point&, t), wherea
parameterizes the curve. The evolutiorya$ prescribed by the normal velociyy. Instead
of evolving the coordinate of thieth boundary point of thg-th particle, &/, y'), we keep
track of the center of mass coordinasd (y/), the total arc length!, and the angl®;
between the tangential vector at the interface atthepoint and thec-axis. The center of
mass is updated by advancing the interfacial points explicitly with normal and tangen
velocities and calculating the center of mass from the new interfacial points. Using the s
and direction convention consistent with [13], the evolution of the total arc length and 1
shape is given by

all 1 (7901 .

AT Vi) de, 73

ot |J/0 po | (@) 0 (73)
2 Vi gl .

967 _ 2w |V @) | 907 (@) ) (74)

ot | du du

Here, Ti is the tangential velocity introduced to keep the spacing of the boundary poil
constant and is given by

) ) T I 2t 991 .
TJ(a,t)zTJ(O,t)+/ a—VJ(o/)olo/—i/ Vi@)de,  (75)
L 2t Jo 0o/
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where the arbitrary change of fram&] (0, t), is taken to be 0. Equation (73) is not
limited by the stability condition of Eq. (72). On the other hand, Eq. (74) is subject 1
the stability condition since it describes the change in the shape of the curve, which is
source of the stiffness. The stiffest part of Eq. (74) is linearizable in Fourier space. \
found that the following scheme works best to stabilize the time advance while minimizi
smoothing,

00i(t k) 1 2m\% o S
Wb ‘5(?1) K291t k) + Rit, k), (76)
where
. 27 (9VI a0l 1/27\3 [8%)]
N] H=—"—| — _TJ — — | — — 77
@b |J<3a+8a ) 2(|J>H[3a3}’ (77)

the hat denotes the Fourier transfofifis the Hilbert transform, andis the wave number. In
this form, animplicit discretization of the first term on the right-hand side is straightforwar
enabling us to avoid the time-step constraint. We discretize Eq. (76) using the followi
scheme,

ol +atk -6tk
At B

6lt+ At k) 6tk

Qi
It + A3 " (1i)3 + N/, k), (78)

1
—§<2n)3|k|3

and Eq. (73) using first-order explicit scheme,

Lt 4+ At) — 1 (t)

— El

where Fl(t) represents the right-hand side of Eq. (73) for {hth particle at timet. In
equilibrium (i.e., wherd! (t + At, k) = 61 (t, k)), Eq. (78) satisfies the necessary condi-
tion that the sum of the two terms in the right-hand side must vanish as the right-he
side of Eq. (76) becomes zero. Note the interfacial lehgtis updated via Eq. (73) be-
fore the shape is updated. This is required by the fact ifiat- At) appears in Eq. (78).
Higher-order schemes for shape update have been suggested for the above time int
tion [14, 18]. However, we have chosen to use the schemes described above bec
some particles may disappear during a time step in our simulation, which may caus
large, local, artificial change in the concentration from one time step to the next. Th
using the value of normal velocity from the previous time step may have adverse effe
We take the mesh spacings to be constaatam an individual body during the update step,
although they are adaptively refined or coarsened during the evolution to assure adec
resolution and optimal efficiency.

6.2. Time Step for Diffusion Problem with Elasticity

The 6-L formulation removes the stiffness from the curvature part of the bounda
condition. If the interfacial motion is driven only by curvature, the method works quite we
as such motion tends to smooth out high curvature regions. However, in our case the el
stress can also drive the interfacial motion. We found that the time step that is appropr
for the interfacial-energy-driven case can cause significant inaccuracy in systems with [
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stress effects. In particular, the changes in the shapes were underestimated at loce
where elastic stress was strong. To remedy this, we introduced a second-level time ¢
Aty, such that

Aty = At/NIoop» (80)

whereAt is the first-level time step, as used in thé& formulation, which must be reduced
as the stress effects increase, &g, is the number of loops over the implicit time stepping
of the shapes, as given by Eq. (78), within one first-level time step. During one first-le
time step V! () is fixed while the shape is evolved via Eq. (78) using intermediate valu
of I 1. The termNioop Should be as large as possible without causing significant change in
normal velocity so that the first-level time step can be as large as possible while minimiz
errors. Fortunately, the potentials are not very sensitive to changes in the shapes of part
We takeNiqop to be 100, which worked best in our test runs. We also made extensive testr
for the first-level time step. We find the following dimensionless time-step size optimiz
the balance between numerical convergence and efficiency,

3

At = %Max[& 103 exp(—0.5756(L)), 2.5- 1074, (81)
where (L) is the system’s average defined in Eq. (7),r) is the average radius, and
(ro) is the initial average radius of particles. Note for high), At can be as small as
2.5. 1074, making the second-level time steft, = 2.5- 1075, almost as small as the time
step required by the explicit time stepping. This requirement is a direct result of the h
angular dependence of the elastic field and the resulting growth of the higher-order te
that are truncated in Eq. (78) [18]. In the absence of stisssf 2.5 - 10-3 was adequate
without the use of the second-level time step [2]. By adopting the second-level time st
we were able to decrease the computation time by two orders of magnitude.

Leo, Lowengrub, and Nie have suggested a different time-step scheme in their re
paper [18]. We are currently examining the scheme to determine whether it is apy
priate in our calculation. Their suggestion may further improve the performance of 1
code.

7. NUMERICAL SIMULATION

Combining all of the methods outlined above yields the following procedure:

Initialization: set up initial sets of interfaces and initialize variables.
Set the first-level time steppt, as a function ofL) (see Eq. (81)).
Determine the elastic field along the interfaces of the particles.
Calculate the boundary conditions on the interfaces.
Solve the diffusion equation with the above boundary conditions.
Calculate the harmonic conjugate function and the normal velocity.
Update the location of the center of mass.
Update the interfacial arc lengths of the particles.
9. Using the second-level time stép At/Niogp), update the shapes of particles via the
tangent angle using the intermediate values of the total interfacial arc lengths. Reggat
times while holding the normal velocity fixed.

© N GOMWNE
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FIG. 4. The initial microstructure, consisting of 4000 circular particles. The box corresponds to the comg
tational domain.

10. Using the center-of-mass locations from Step 7, the interfacial lengths from Stej
and the shapes from Step 9, calculate the updated locations of interfacial points.
11. Repeat Steps 2-10.

A multiparticle system containing various sizes of particles will not reach an equilibriu
state because of the diffusion of mass between the particles. We start our calculat
using 4000 circular particles (see Fig. 4). In Fig. 5, we show the time sequence of
microstructural evolution of a system withg) = (L(t = 0)) = 1. Extensive quantitative
analyses of the results are performed, and are published elsewhere [32, 33]. Here we f
on the qualitative nature of the results.

When only one particle exists in the system, a particle evolves toward its equilibrit
shape, which depends on the paramdtei he equilibrium shapes of an isolated particle
have been computed for a Ni-Al system by Thompson, Su, and Voorhees [30]. They fol
that the shape is a circle whén= 0 and becomes a four-fold symmetric square-like shap
asL increases. Wheh exceeds the critical value 5.6, a bifurcation takes place and two-fo
symmetric (elongated) shapes become the energy-minimizing equilibrium shapes. In
multiparticle simulation, we observe a similar behavior. When elastic stress is negligit
the particles are circular (or nearly circular). During coarsening in many-body syster
however, the shapes of the particles do not reach equilibrium, but rather the mass diffu:
from surrounding particles and interparticle elastic interactions cause the shapes tc
slightly distorted from the equilibrium shape.

The particles become nearly four-fold symmetric shapes, even at gLlpvef 2.0.

A magnification view (5x) is provided in Fig. 5, top right, to show the shape variatior
smaller particles maintain nearly circular shapes while larger particles tend to achieve n
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5x magnification |
L ]

7x magnification

FIG. 5. The microstructures over the computational domain (left) and selected regions magnified from ¢
responding microstructure. The values(bf are 2.0, 4.1, and 6.1, corresponding te 13.5, 1522, and 512.1,
from the top to the bottom. The number of remaining particles are 1066, 229, and 104, respectively. The magr
regions are noted by boxes with white outline on the left.

four-fold, square-like shapes. In addition, we find particle alignment along the vertical a
the horizontal directions which correspond to the elastically &d¥0) directions of the

crystal. The shape changes of the particles are mainly due to the elastic energy gene
by the particle itself, rather than by the elastic interaction, and the particle alignment is
to the configurational forces (or equivalently elastic interaction energy) generated by ot
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particles [28]. An exception to this is when two particles or more are very close; then t
elastic interactions can cause the shapes to be distorted significantly.

Although the effects of elastic self-energy are obvious from the shape change, the al
ment of particles is not as clear{@t) = 2. This is likely to be because the elastic interactior
energy is typically a small fraction of the total elastic energy at the low area fraction v
are examining. However, early signs are seen where chains establish themselves by ct
as a result of fluctuations in the initial configuration. Elastic interaction helps to stabili;
such conformations, and they survive for a long period of time at the expense of partic
not aligned with others.

By (L) = 4.1, most particles are aligned with several others, making the microstructt
consist of more ordered congregations of chains. Particles in the middle of chains
stabilized by the elastic interaction energy, and they may grow even if they are sma
than the surrounding particles. In addition, a chain may grow as a whole at the expens
isolated large particles or smaller chains. Slight elongation (a non-four-fold shape) see
many particles is due to three factors: (1) large particles hawe5.6 and two-fold shapes
have lower energy in that case, (2) the elastic interaction with another particle causes
particle to elongate itself along the axis of alignment, and (3) aligned particles growing at
expense of close neighbors do so by extending themselves toward these neighbors. A
a magnified view (middle right in Fig. 5) shows the shape changes. As a result of parti
migration and preferential growth, particle interfaces may become very close to that of tf
immediate neighbors. It may seem that some of the interfaces of particles are touchin
connected. However, as shown in the 7x magnified viglv at= 6.1 (bottom rightin Fig. 5),
the separations between interfaces are maintained and well resolved even at this late <
The separation is maintained throughout the runs by the elastic repulsion between part
that occurs at a short distance. Using the materials parameter of Ni-Al, this separatio
large on an atomic scale, and thus coalescence is not important for this system for the r:
of (L) studied. It should be noted, however, that coalescence may become a major e
at a higher volume fraction and/or a largér. Although we do not allow coalescence in
these simulations, we are currently studying a possibility of a hybrid method that allo
for both high resolution of particle shapes (as in these simulations) and coalescence.

All of these observations are consistent with experimental findings and previous 1
merical simulations. However, using an initial number of particles as large as 4000,
are now able to make systematic characterizations of the resulting microstructure to al
guantitative comparisons to experiments.

Through the analysis of our calculations, we identified various aspects of underlyi
processes in complex systems with free interfaces and elastic effects [32, 33]. The anal
of the calculation results for the case shown above revealed a system that was sin
than we expected. One such finding was the change in the kinetics of coarsening in tl
systems. Using the results, we were able to suggest a new simple picture of coarsening
depends only on the symmetry of particle shapes. Although our calculations are limitec
two dimensions, the information we obtained will help us understand the effects of ela:
stress on the coarsening processes in real (3D) systems.

8. PERFORMANCE

For 4000-particle runs, one time step takes up to 500 CPU seconds on an NEC NX-4
coarsening reduces the number of particles, the computational time decreases significe
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FIG. 6. The computational time for calculating the elastic field is plotted against number of points in tl
computational domain on a log-log scale. Lines with slopes 1 and 2 are provided to guide the eye.

The total number of time steps required for a complete run depends strondlyobn
because of the dependence of the time step on the strength of elasticitlofer 1 case,
the total CPU time was approximately 18 days. Up to 4000 patrticle runs are manageabl
workstations with current technology, such as a Hewlett Packard 9000/785, over 10 day
six weeks, depending afbq).

We summarize the comparison of performance between the direct sum method (D!
and the FMM for the calculation of the elastic field in Fig. 6. The DSM code uses a simj
direct sum to calculate the elastic field via Eq. (13). For this reason, we assume that
computational domain is isolated (nonperiodic). The FMM code calculates the poten
via Eq. (66) using the FMM modified for the parallelogram-shaped unit cell (without ir
cluding the periodicity). Each point on the plot represents a result from a run. The num
of particles,M, in a run was varied from 50 to 550, while the number of mesh points c
each particlen, is varied from 4 to 2048. The tests were performed only for the purpo:
of benchmarking, and we disregard the fact that some of the resolution settings are
adequate to obtain accurate results. The computational Tgnfar calculating the elastic
field for a given configuration is plotted against the total number of mesh pdints Mn,
on a log—log scale to show the scalingTefwith N. Lines with slopes 1 and 2, which are
indicative ofO(N) andO(N?) behavior, respectively, are plotted also to guide the eye.

For a small total number of points, the direct sum method is faster than the FMM beca
of the larger overhead in computational cost associated with the FMM. At very sinall
the scaling is obscured by the computational overhead in both methods. Therefore,
deviation from scaling at smalN should be ignored. At a few thousand points, the com
putational times for both methods are similar, and @@\ ?) behavior is evident in the
DSM data. For the FMM, the scaling becomes clear only when a very large number of m
points is employed. FAX > 10000, however, the overhead effects become negligible, a
O(N) behavior is clearly exhibited. The computational cost of the FMM is approximate
given byCrgmm N, where the coefficierCegy is significantly greater tha@psy and where
CpswN? approximates the computational cost for the DSM. HoweBgyw is sufficiently
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small enough that the FMM becomes much more efficient for the number of mesh poi
relevant for our simulation.

Our calculations typically have 4000 particles initially, each described by 128 to 2!
points (for L & 1), resulting inN = 512000 to 1024008 10°. The elastic portion of
the calculation takes approximately 40 CPU seconds each (first-level) time stip=for
512000. The direct sum method would have taken about two orders of magnitude lon
4400 CPU seconds. Therefore, the simulations would not have been possible without u
the FMM for the elastic field calculations.

9. CONCLUSIONS

A new set of numerical methods has been presented to accurately and efficiently si
late the evolution of microstructure in elastically stressed solids. These involved bound
integral methods, versions of the fast multipole method, and various time-stepping te
niques. The result is a numerical method that can be employed to increase by ordel
magnitude the number of particles simulated in a computational study of the evolution
microstructure.

In the process of developing the method, a number of issues were addressed:

1. Aform for potentials in periodically arranged cells that is applicable in situations th
require a general scheme to calculate a periodic potential via a summation in physical sp

2. An FMM for anisotropic linear elasticity that for largeéis orders of magnitude faster
than a direct sum method. The relevant dipole correction terms are introduced for unit c
that are parallelograms.

3. Introduction of a second-level time step for updating the shapes of particles. Althot
this approach should be used cautiously, it is possible to speed up the calculations by
additional orders of magnitude without a significant loss of accuracy.

4. A variable first-level time step as a function of the relative importance of the stre
with respect to the interfacial effects.

Many of these techniques will have applications in other contexts as well.

The details are worked out specifically for our two-dimensional study. A correspondi
simulation in three dimensions remains a challenge because of further complications suc
the lack of analytic Green'’s function for the anisotropic elasticity problem [31]. Howeve
the general ideas, such as incorporating the FMM, efficient time-stepping, and peric
potentials, can be extended for use in three-dimensional studies where similar issues
to be addressed.
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